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Ah&act-!;ingle and multi-domain spectral collocation methods utilizing Chebyshev polynomials were 
employed to obtain highly accurate solutions to one-dimensional phase-change problems. The Landau 
transformation was imposed to fix the position of the moving boundary. Spatial derivatives were approxi- 
mated using both spectral and finite-difference representations. Solutions to the resulting ordinary differ- 
ential equations in time were obtained using the Gear and Adams predictor-corrector algorithms as 
implemented within the Mathematics programming environment. For test problems in which exact solu- 
tions are available, results for the spectral representations compared favorably with solutions obtained 

using second-order accurate finite-difference approximations. 

INTRODUCTION 

The transient phase change or Stefan problem con- 
sidered here involves the tracking of a sharp moving 
boundary, separating liquid and solid phases of a pure 
substance. Within each of the phases the heat transfer 
process is governed primarily by conduction. 
However, because of the nonlinearity of the interface 
condition, exact solutions are limited to a small num- 
ber of idealized cases (cf. ref. [l]). Thus, numerical 
solution procedures are often employed. Most pre- 
vious numerical works involve discretizations of the 
governing equations using either finite-difference or 
finite-element methods. These methods are generally 
implemented under the categories of (a) fixed grid 
methods [2] ; (b) variable grid methods [3, 41; (c) 
enthalpy methods [5, 61; (d) front-fixing methods [2, 
71. For a comprehensive review, the reader is referred 
to the extensive work of Crank [8]. 

Spectral representations have recently become 
fashionable in the solution of fluid mechanics prob- 
lems such as direct numerical simulations of tur- 
bulence and boundary-layer linear stability cal- 
culations (cf. ref. [9]). Based upon the successes for 
those difficult problems, it was decided to investigate 
the suitability of spectral methods for obtaining highly 
accurate solutions to phase-change problems. Com- 
pared with finite-difference and finite-element 
methods, relatively few grid points are needed for 
spectral discretizations (because of the global nature 
of the interpolating functions). This effectively renders 
fixed and variable grid methods impractical. Large 
gradients in the enthalpy function at the moving 
boundary also render enthalpy methods somewhat 
undesirable, at least for problems in which the phase 
change takes place at a fixed temperature. However, 
spectral collocation methods utilizing Chebyshev 

polynomials may readily be applied to front-fixing 
methods, and this is the approach taken here. This 
approach also provides for highly accurate cal- 
culations of the temperature gradients at the liquid/ 
solid interface, hence the interface velocity and posi- 
tion is accurately computed. 

In order better to assess the accuracy of the 
methods, test problems with analytical solutions have 
been chosen. More specifically, both one- and two- 
phase one-dimensional melting problems in a semi- 
infinite medium with constant material properties are 
considered (although the thermal diffusivity may vary 
between the liquid and solid phases). These test prob- 
lems are solved numerically utilizing single- and multi- 
domain spectral representations. The approach within 
the category of front-fixing methods that is employed 
utilizes the Landau coordinate transformation and 
method of lines (MOL) (cf. ref. [7]). The MOL 
involves the solution of a system of ordinary differ- 
ential equations in time. In the present work, the set 
of ODES is solved using either the Gear method (for 
stiff sets of equations) or the Adams predictor-cor- 
rector method within the Mathematics [lo] pro- 
gramming environment. Results are compared with 
exact solutions, and with solutions obtained using 
second-order accurate finite-difference approxi- 
mations (for the spatial derivatives). 

GOVERNING EQUATIONS 

The following linear heat conduction equation with 
constant coefficients governs the temperature dis- 
tribution in each of the liquid (i = 1) and solid (i = 2) 
phases : 

au- azu- 
1 _a;- = 0, 

at a.2 
t > 0. 
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NOMENCLATURE 

E elements of derivative matrix E Chebyshev variable 
F elements of derivative matrix in 8’ dimensionless temperature in zone I 

physical domain (= u-u,/uL--uu,) 
G elements of second derivative matrix 0” dimensionless temperature in zone II 
H elements of second derivative matrix (= u-z&/u,--u,) 

in physical domain i interpolant for Chebyshev scheme 
k thermal conductivity 5 transformed coordinate 
1 domain length and length scale P density 
Nl order of Chebyshev polynomials in T dimensionless time (= ~,t/l*) 

zone I ; number of grid points in finite- ratio of specific heats (= fi) 
difference scheme ; Chebyshev polynomial 

N2 order of Chebyshev polynomials in x latent heat 
zone II ; number of grid points in finite- Q scaling factor. 
difference scheme 

S front location 
S dimensionless front location s// 

St, Stefan number, zone I 

(= C, (% -%)/X) 
St, Stefan number, zone II 

(= C,(~,--u2)Ix) 
t time 
# temperature 
X Cartesian coordinate 
.? ( = x/l). 

Greek symbols 
CI thermal diffusivity 

Superscripts 
I zone one (liquid phase) 
II zone two (solid phase). 

Subscripts 

j index 
L x = 0 (left face) 
m melt temperature 
1 zone one (liquid phase) 
2 zone two (solid phase). 

In the liquid phase 0 < x < s(t) and in the solid phase 
s(t) < x < 1 where s(t) denotes the location of the 
moving boundary. An additional equation (resulting 
from an interface energy balance) for s(t) is given as : 

a91 
-_= 
aT 

(liquid phase) 

(44 

k2z-k,g=pX$ 
de” 

atx=s(t) t>O. a~= 

(2) 

In addition, at the interface u, = u2 = u,. The 
location of the moving boundary may be fixed 
through the Landau coordinate transformation [ 1 l] : 

This fixes the moving boundary so that at x = s(t) + 
l1 = & = 1. Upon application of the coordinate trans- 
formation, and the introduction of dimensionless 
length, time and temperature variables, the appro- 
priate form of the governing equations becomes 
(where for later convenience, superscripts I and II 
have been introduced, and are analogous to subscripts 
1 and 2) : 

(solid phase) (4b) 

dS St, aelI St, ae’ 
- = ~ - - s ag 
dr u’(S-1) 852 

(interface). (4c) 
I 

The interface boundary condition becomes 
0’(l) z) = f3”(1, r) = 0. In addition, Q’(0, T) = 1 and 
~“(O,Z) =f(r). (For the cases to be calculated, the 
temperature on the left face is fixed, and the back-face 
temperature is defined as a function of time.) 

NUMERICAL METHOD 

Spectral methods are characterized by an expansion 
of the solution in terms of global basis functions. In 
the present case, since the temperature distribution is 
not periodic, Chebyshev polynomials have been 
chosen as the basic functions. Chebyshev polynomials 
exhibit rapid convergence rate with increasing num- 
bers of terms, and also cluster the collocation points 
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near the boundaries [12]. One additional benefit is 
that, unlike higher order finite-difference methods, 
accurate treatments of derivative boundary conditions 
are easily implemented. 

The Nth order polynomials PN are defined on the 
interval - 1 < E <; 1 and may be written as [12] : 

where the interpol.ant Izk is given as : 

n,(E) = (6) 

Herec,,=c,=2,andc,+=l,O<k<N. 
The collocation points E, are the extrema of P, and 
are given as : 

j = 0, 1,. . N. (7) 

The first and second derivatives may then be written 
in the computational domain as [12] : 

and 

d2Cp _- 1 ldE2 = k$, G,k4k @b) 

where, 

E 

/k 
= 2 (-l)k+’ 

-, jfk 
Ck Ei--&k 

(8~) 

E, = - -!i--- 
2(1 -Ef) 

(84 

G,, = 4&n,. (80 

Since the physical domain may not range from (- 1, 
1) a scaling factor between the physical and com- 
putational domains is defined as : 

The first and second derivative matrices in the physical 
domains are then written as Fjk = aElk and 
Hjk = FimFmk respectively. 

The following discussion concerns a two-phase 
moving boundary problem. (The procedure for a 
single-phase problem is easily inferred from the dis- 
cussion.) The physical domain is first divided into two 
domains, domain I, corresponding to the region in 
which the liquid phase exists, and domain II, cor- 
responding to the region of the solid phase. Since the 
physical range in this problem is (0, 1) (within each 

domain) transformations between the computational 
and physical domains are defined as : 

E = l-25 (domain I) 

E = 25 - 1 (domain II). 

(lOa) 

(lob) 

Equations (4a) and (4b) are then written in terms of 
truncated Chebyshev expansions at the collocation 
points in domains I and II respectively, where the 
collocation points are given as : 

(domainI;j=O,l,...Nl) (lla) 

(domain II; j = 0, 1,. . . N2). (llb) 

The interface equation is, of course, also expressed 
in terms of the Chebyshev expansions. The resulting 
spectral representations of equations (4a)-(4c) are 
given as : 

dq_ 1 N’ 
dr -Sk=,, 

c H;k@:+ 

j= 1,2 ,...Nl-1 (12a) 

de:I_ 
dr - 

x ,~,F$&Jf j= 1,2,...N2-1 (12b) 

The resulting set of Nl + N2 - 1 ordinary differential 
equations are solved utilizing a variable time step 
ODE solver provided within the Mathematics [lo] 
programming language. The routine NDSolve uses 
an Adams predictor-corrector method for non-stiff 
differential equations and the Gear method for stiff 
equations. The routine switches between the two 
methods using heuristics based on the adaptive step 
size. The algorithms and the heuristics for switching 
are described in Hindmarsh [ 131 and Petzold [ 141. 

Solutions have also been obtained in which the spa- 
tial derivatives were approximated using second-order 
accurate finite-difference expressions. The discretized 
form of these equations may be found in the work of 
Furzeland [7]. The solutions to this resulting system 
of ODES are also obtained using NDSolve. (Note 
that when the finite-difference approximations are dis- 
cussed in the Results section, N refers to the number 
of grid points. When spectral representations are dis- 
cussed, N represents a quantity one less than the num- 
ber of collocation points.) 

Since the equations are singular at z = 0, the func- 
tional evaluations required within NDSolve (at z = 0) 
cannot be performed. Hence, some alternative means 
of starting the solution must be used. One method is 
to employ a first-order accurate implicit time dis- 
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cretization for equations (12a)-( 12~) for the first time 
step. This then provides NDSolve with a set of initial 
conditions and a non-zero value of S. NDSolve may 
then be employed to advance the solution in time. 
However, since the purpose of this paper is to provide 
comparisons between spectral and finite-difference 
spatial difference schemes, the exact solution at 
7 = 10m8 is used to provide the initial conditions. This 
removes any uncertainty in the results caused by the 
initial conditions that might be provided by the 
implicit time discretization. In addition, for the two- 
phase problem, the exact temperature (as a function 
of time) was specified at the back face (x = I). This 
again was for the purpose of removing uncertainty due 
to the specification approximate boundary conditions. 

RESULTS 

Results are first presented for a single-phase melting 
problem in a semi-infinite medium. Comparisons with 
results obtained using second-order accurate finite- 
difference approximations are presented (in terms of 
front location and CPU times). Results for the CPU 
times include only the time to solve the respective 
initial value problem (i.e. excluding the time to set up 
the ODES, which is minimal) and were obtained using 
the Mathematics Timing routine. In addition, the 
PrecisionGoal setting within the Mathematics rou- 
tine NDSolve was set to 10 digits. (PrecisionGoal is 
an option to NDSolve which specifies how many 
digits of precision, in terms of relative error, should 
be sought in the final result.) Of course, changing the 
precision to which the relative error of the solutions 
is computed will affect the CPU time. In fact, lower 
levels of precision could have been specified without 
affecting the final absolute error (due to the spatial 
discretizations) in the front location for both the 
finite-difference and spectral methods in cases where 
the spatial discretizations were coarse. However, for 
consistency, a value of 10 digits was used throughout. 

Figure 1 shows results in terms of front location for 

lo” 

E 
- 2nd orderfinite diffmmos 

I 1 
150 

104 
- spectra1 

Fig. 1. Comparison of absolute error in the computed 
location of the moving boundary (and the associated CPU 
time) between spectral collocation and finite-difference 
schemes for the single-phase problem (St = 1) as a func- 

tion of the number of grid points. 

a Stefan number of 1 for both spectral collocation and 
second-order-accurate finite-difference approxi- 
mations at time r = 0.25. CPU times (in seconds, on 
a Sun SPARClO workstation) are also shown. The 
rapid convergence rates of the spectral method are 
clearly indicated, as is the second-order convergence 
of the finite-difference approximation. For the spec- 
tral method at a Stefan number of 1, absolute 
errors of order 10m8 are achieved with CPU times of 
approximately 13 s (the exact solution is given as 
S= 0.62188136, cf. ref. [l]). As a measure of 
efficiency, it is noted that for equal CPU time, errors 
for the spectral method are up to four orders of mag- 
nitude smaller than for the finite-difference method. 
(Of course, if the number of grid points is held 
constant, more CPU time is required by the spectral 
method than the finite-difference method.) Although 
the results for the one-phase case are very impressive, 
from a practical point of view, the performance of 
the spectral method in the two-phase case is more 
relevant. 

Numerical experiments revealed that, for the two- 
phase Stephan problem, the accuracy was governed 
primarily by the number of grid points in domain II. 
Shown in Fig. 2(a) is the absolute error of the interface 
location for a two-phase problem as a function of N2 
for St, = St, = 1 at r = 0.075 (the exact solution is 
S = 0.20690756, cf. ref. [l]). The number of grid 
points in domain I was set to 7 for the spectral scheme 
and 10 for the finite-difference scheme (recall that the 
number of grid or collocation points for the spectral 
scheme equals N+ 1, thus Nl = 6). Increasing the 
number of points beyond these values had little effect 
on the resultant accuracy. The spectral calculations 
were run on two different grids, one as defined by 
equations (1 Oa) and (1 Ob) and another that employed 
an algebraic stretching function designed to cluster 
points towards the moving boundary in domain II. 
That stretching was defined as 5 = a( 1 +&)I(&&), 
where b = 1+2a and a = g/(1 - 2[). Here [ is the 
location corresponding to E = 0. A value of [ = 0.75 

-----O- finite difference 

Fig. 2. Absolute error in the computed location of the moving 
boundary as a function of number of grid points for the two- 

phase problem (St, = St, = 1). 
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was chosen. The effectiveness of this grid clustering is 
quite evident, providing roughly an order of mag- 
nitude decrease in the absolute error with respect to 
the distribution defined by equations (lOa) and (lob). 
(Of course, clustering should also improve the accu- 
racy of the finite-difference scheme, but since the 
emphasis is on spectral representations, this exercise 
was not performecl.) In summary, for both the spectral 
and finite-difference schemes, the accuracies achieved 
for the two-phase case are less than achieved for the 
single-phase case. However, relative to the finite- 
difference scheme. the spectral scheme still provides a 
much higher convergence rate. 

The decrease in accuracy is due to the existence of 
extremely large temperature gradients at the moving 
boundary (in domain II) for a small time. Accurate 
resolution of these gradients (or the heat flux) is essen- 
tial if the numerical scheme is to track the front move- 
ment accurately. IFigure 3(a) shows a comparison of 
the relative error in the temperature gradient at the 
front location in domain II for the spectral cal- 
culations (withoui stretching) for N2 = 4 and 9 (cor- 
responding to 5 and 10 collocation points respec- 
tively). The rapid convergence of the first (spatial) 
derivative is quite apparent. With N2 = 9 the relative 
error is quite small for z > 0.01. This time level cor- 
responds to an interface location S z 0.076. In 
addition, the exact interface location (to 3 significant 
digits) at z = 0.075 is S = 0.207. Hence, although 
large errors in the temperature gradient are restricted 
to small time, the front velocities are large, and the 
front has already traversed a significant portion of 
the domain. However, with N2 = 4, significant errors 
exist over the entire range 0 < 7 < 0.075, and it is 

(b) O-2 
0.15 

0.1 

I 

Nz=lO 

Nz=u)--__ 
0.05 

1 0.~~--0737Tm3’ - -.-- ;.L, 
-0.05 ,’ t 

-O.l’, i-t-’ -0.15 ” 

-0.2t 

Fig. 3. Absolute elTor of first derivative of temperature 
(c%~~‘/c%) in zone II at the location of the moving boundary 
interface : (a) spectral collocation method ; (b) finite-differ- 

ence method. 

understandable that for this case the errors in terms 
of interface location are relatively large. It is further 
noted that when the numerical calculations were 
initiated at z = 0.01 (with exact initial conditions) the 
large gradients at the front (with the associated errors) 
were eliminated, and convergence rates comparable 
to the single-phase problem were achieved. 

Shown in Fig. 3(b) are similar calculations for the 
finite-difference scheme with N2 = 10 and 20. Relative 
errors are significantly larger than for the spectral 
calculations (with N2 = 9) and the superior con- 
vergence rate of the spectral scheme is clearly revealed. 
(It is noted that errors in the temperature gradient at 
the moving boundary in domain I are much smaller 
than those in domain II for both spectral and finite- 
difference schemes and do not significantly affect the 
results, thus they are not presented.) 

Absolute errors in the (dimensionless) temperature 
profiles are next examined in Figs. 4(a) and (b) at 
5 = 0.075. Figure 4(a) shows results for the spectral 
scheme for N2 = 4,9 and 14 (with Nl = 6). The rapid 
rate of convergence is demonstrated, with absolute 
errors decreasing by 2-3 orders of magnitude for a 
threefold increase in the number of collocation points. 
In contrast, the convergence rate for the finite-differ- 
ence calculations as shown in Fig. 4(b) (for N2 = 10, 
20, 30 and 40, Nl = 10) is much less impressive, 

- N2=4 
- N2-2 

1oQ -o- N2=14 

% loa 

3 lo4 

% lo6 

lo* 

10” J 
0.0 0.2 0.4 0.6 0.8 1.0 

XJl 

- N2=10 

loQ - N2d?O 
--o- N2=20 

10’ 

lo”r.““. . .““‘.‘.““. . . . 1 
0.0 0.2 0.4 0.6 0.8 1.0 

WI 

Fig. 4. Absolute errors in temperature as a function off and 
N2: (a) spectral collocation method; (b) finite-difference 

method. 
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although maximum absolute errors using 40 grid 
points are only about 1 order of magnitude larger than 
obtained with the spectral scheme using 15 collocation 
points. Although not shown, results for the spectral 
scheme employing the previously described grid clus- 
tering improved the accuracy, with maximum absol- 
ute errors on the order of 10-j to 10m6 when 15 col- 
location points were employed. 

SUMMARY 

Spectral collocation methods employing Chebyshev 
polynomials provide an accurate and efficient means 
for computing solutions to one-dimensional phase- 
change problems within the context of front-fixing 
methods. Convergence rates (in terms of the front 
location and temperature profiles) much higher than 
those obtained using second-order accurate finite- 
difference methods were achieved. A source of inac- 
curacy for both spectral and finite-difference schemes 
concerns the calculation of the temperature gradient 
at the moving boundary in the solid phase at early 
time levels. Although the accuracy of spectral methods 
is known to decrease in regions of large gradients, the 
computed results for the temperature gradient in the 
solid region at the moving boundary compared favor- 
ably with those of the finite-difference scheme. The 
implementation of grid clustering towards the moving 
boundary in the solid region was also found to reduce 
significantly the levels of error throughout the 
domain. 

As a result of the high accuracy achieved with the 
spectral methods, the program will, in the future, be 
extended to include variable properties, and will be 
utilized in the calculation of laser-solid interactions 
for applications involving laser surface treatments 
(where the one-dimensional approximation is appro- 
priate). The author found the Mathematics pro- 
gramming environment to be quite useful, and as a 
result, the extended code will be implemented as a 
Mathematics package and made available to inter- 
ested users. 

Acknowledgments-The author would like to acknowledge 
the NASA EPSCOR program for supporting this work. 

1 

2. 

3. 

4 

5. 

6. 

7. 

8. 

9. 

10. 

Il. 

12. 

13. 

14. 

REFERENCES 

V. Alexiades and A. D. Solomon, Mathematical model- 
ing of melting and freezing processes, Hemisphere, 
Washington, DC (1993). 
J. Crank, Two methods for the numerical solution of 
moving-boundary problems in diffusion and heat flow, 
J. Mech. Appl. Math. 10,22&231 (1957). 
R. S. Gupta, Moving grid method without inter- 
polations, Comp. Meth. Appl. Mech. Engng 4, 143-152 
(1974). 
R. S. Gupta and D. Kumar, Variable time step methods 
for one-dimensional Stefan problem with mixed boun- 
dary condition, Int. J. Heat Mass Transfer 24, 251-259 
(1981). 
V. Voller and M. Cross, Accurate solutions of moving 
boundary problems using the enthalpy method, Int. J. 
Heat Mass Transfer 24,545-556 (1981). 
V. R. Voller and C. R. Swaminathan, Fixed grid tech- 
niques for phase change problems: a review, Zni. J. 
Numer. Meth. Engng 30,875-898 (1990). 
R. M. Furzeland, A comparative study of numerical 
methods for moving boundary problems, J. Inst. Math. 
Appl. 26,411429 (1980). 
J. Crank, Free and Moving Boundary Problems. Clar- 
endon Press, Oxford (1984). 
M. Y. Hussaini and T. A. Zang, Spectral methods in fluid 
dynamics, Ann. Rev. Fluid Mech. 19, 339-367 (1987). 
S. Wolfram, Mathematics : A System for Doing Math- 
ematics by Computer. Addison-Wesley, New York 
(1992). 
H. G. Landau, Heat conduction in a melting solid, 
Quart. Appl. Math. 8, 81-94 (1950). 
D. Gottlieb, M. Y. Hussaini and S. A. Orszag, Theory 
and applications of spectral methods. In Spectral 
Methods for Partial Differential Equations (Edited by 
R. G. Voigt, D. Gottlieb and M. Y. Hussaini), SIAM- 
CBMS, Philadelphia (1984). 
A. C. Hindmarsh, ODEPACK: a systemized collection 
of ODE solvers. In Scientific Computing (Edited by 
R. S. Stepleman et a/.), pp. 55564. North-Holland, 
Amsterdam ( 1983). 
L. R. Petzold, Automatic selection of methods for solv- 
ing stiff and nonstiff systems of ordinary differential 
equations, SIAM J. Sci. Statistical Computing 4, 136 
148 (1983). 


